Data-driven HRF estimation for encoding and decoding models

نویسندگان

  • Fabian Pedregosa
  • Michael Eickenberg
  • Philippe Ciuciu
  • Bertrand Thirion
  • Alexandre Gramfort
چکیده

Despite the common usage of a canonical, data-independent, hemodynamic response function (HRF), it is known that the shape of the HRF varies across brain regions and subjects. This suggests that a data-driven estimation of this function could lead to more statistical power when modeling BOLD fMRI data. However, unconstrained estimation of the HRF can yield highly unstable results when the number of free parameters is large. We develop a method for the joint estimation of activation and HRF by means of a rank constraint, forcing the estimated HRF to be equal across events or experimental conditions, yet permitting it to differ across voxels. Model estimation leads to an optimization problem that we propose to solve with an efficient quasi-Newton method, exploiting fast gradient computations. This model, called GLM with Rank-1 constraint (R1-GLM), can be extended to the setting of GLM with separate designs which has been shown to improve decoding accuracy in brain activity decoding experiments. We compare 10 different HRF modeling methods in terms of encoding and decoding scores on two different datasets. Our results show that the R1-GLM model outperforms competing methods in both encoding and decoding settings, positioning it as an attractive method both from the points of view of accuracy and computational efficiency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Mixed L2 Norm Regularized HRF Estimation Method for Rapid Event-Related fMRI Experiments

Brain state decoding or "mind reading" via multivoxel pattern analysis (MVPA) has become a popular focus of functional magnetic resonance imaging (fMRI) studies. In brain decoding, stimulus presentation rate is increased as fast as possible to collect many training samples and obtain an effective and reliable classifier or computational model. However, for extremely rapid event-related experime...

متن کامل

Improved decoding of neural activity from fMRI signals using non-separable spatiotemporal deconvolutions

The goal of most functional Magnetic Resonance Imaging (fMRI) analyses is to investigate neural activity. Many fMRI analysis methods assume that the temporal dynamics of the hemodynamic response function (HRF) to neural activation is separable from its spatial dynamics. Although there is empirical evidence that the HRF is more complex than suggested by space-time separable canonical HRF models,...

متن کامل

A Model-Driven Decision Support System for Software Cost Estimation (Case Study: Projects in NASA60 Dataset)

Estimating the costs of software development is one of the most important activities in software project management. Inaccuracies in such estimates may cause irreparable loss. A low estimate of the cost of projects will result in failure on delivery on time and indicates the inefficiency of the software development team. On the other hand, high estimates of resources and costs for a project wil...

متن کامل

Volumetric soil moisture estimation using Sentinel 1 and 2 satellite images

Surface soil moisture is an important variable that plays a crucial role in the management of water and soil resources. Estimating this parameter is one of the important applications of remote sensing. One of the remote sensing techniques for precise estimation of this parameter is data-driven models. In this study, volumetric soil moisture content was estimated using data-driven models, suppor...

متن کامل

Real-time quality monitoring in debutanizer column with regression tree and ANFIS

A debutanizer column is an integral part of any petroleum refinery. Online composition monitoring of debutanizer column outlet streams is highly desirable in order to maximize the production of liquefied petroleum gas. In this article, data-driven models for debutanizer column are developed for real-time composition monitoring. The dataset used has seven process variables as inputs and the outp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • NeuroImage

دوره 104  شماره 

صفحات  -

تاریخ انتشار 2015